Prolonged Release Evaluation of an Injectable Anticancer Drug using Human Serum Albumin Nanoparticle
Authors
Abstract:
Human serum albumin nanoparticles (HSA-NPs) were synthesized using the modified desolvation method. Fourier transform infrared spectroscopy (FT-IR), electronic absorption spectroscopy (UV-Vis), Zeta Sizer as well as field emission scanning electron microscope (FE-SEM) of the sample confirmed the formation of HSA NPs with an average size of 68 nm. The obtained results shown that HSA-NPs was successfully synthesized. The cytotoxic study of HSA-NPs in the HFFF2, normal cell lines was conducted and cell viability percentage demonstrated more than 90% within 24 h. Therefore, the synthesized NPs were nontoxic compared to the control samples. Furthermore, the release of the oxaliplatin as an anticancer drug incorporated in HSA NPs was also investigated in physiological conditions. The drug loading (DL) and drug entrapment efficiency (DEE) were enhanced and the DL of 0.9% and DEE of 51% are achievable. The Higuchi model was shown the best fitting compared to the different kinetically release model. This result and result of cyclic voltammetry indicated that the drug release mechanism followed by diffusion manner. Therefore, our present study showed that the biocompatible HSA NPs could improve prolonged release of oxaliplatin as anticancer drugs.
similar resources
Study of Human Albumin Protein Interaction with Fluorouracil Anticancer Drug Using Molecular Docking Method
Introduction: Drugs are mainly delivered to the target tissues by plasma proteins, such as human serum albumin, in the human body. Practical information about the thermodynamic parameters of drugs and their stability can be obtained using simulation methods, such as molecular docking. Material & Methods: This study, investigated the molecular docking of human serum albumin with fluorouracil an...
full textDesign and evaluation of S-nitrosylated human serum albumin as a novel anticancer drug.
In recent studies, the cytotoxic activity of NO has been investigated for its potential use in anticancer therapies. Nitrosated human serum albumin (NO-HSA) may act as a reservoir of NO in vivo. However, there are no published reports regarding the effects of NO-HSA on cancer. Therefore, the present study investigated the antitumor activity of NO-HSA. NO-HSA was prepared by incubating HSA, whic...
full textDesign and synthesizing appropriate carrier for release of dexamethasone as an anticancer drug
Introduction: One of the effective drugs in the treatment of cancer is dexamethasone. Dexamethasone is known as one of the safest glucocorticoid, but there is still side-effects, due to its hydrophobicity and low bioavailability. The purpose of the present study is to design a controlled release carrier for dexamethasone in order to overcome constraints and reduce side effects. Materials and Me...
full textEnhancement of anticancer efficacy using modified lipophilic nanoparticle drug encapsulation
BACKGROUND Development of anticancer drugs is challenging. Indeed, much research effort has been spent in the development of new drugs to improve clinical outcomes with minimal toxicity. We have previously reported that a formulation of lipid gold porphyrin nanoparticles reduced systemic drug toxicity when compared with free gold porphyrin. In this study, we investigated the delivery and treatm...
full textHuman Serum Albumin-Based Nanoparticle-Mediated In Vitro Gene Delivery
The genetic treatment of neurodegenerative diseases still remains a challenging task since many approaches fail to deliver the therapeutic material in relevant concentrations into the brain. As viral vectors comprise the risk of immune and inflammatory responses, human serum albumin (HSA) nanoparticles were found to represent a safer and more convenient alternative. Their ability to cross the b...
full textMathematical Analysis of Drug Release for Gastrointestinal Targeted Delivery Using β-Lactoglobulin Nanoparticle
To answer challenge of targeted and controlled drug release in oral delivery various materials were studied by different methods. In the present paper, controlled metal based drug (Pd(II) complex) release manner of β‑Lactoglobulin (β-LG) nanoparticles was investigated using mathematical drug release model in order to design and production of a new oral drug delivery system for gastrointestinal ...
full textMy Resources
Journal title
volume 2 issue 2
pages 118- 125
publication date 2016-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023